ALTACRO rehabiliation exoskeleton: Automated Locomotion Training using an Actuated Compliant Robotic Orthosis
IWT SBO MIRAD: an integrated Methodology to bring Intelligent Robotic Assistive Devices to the user, with a lower-limb exoskeleton as demonstrator.
A robot that can feel what a therapist feels when treating a patient, that can adjust the intensity of rehabilitation exercises at any time according to the patient's abilities and needs, and that can thus go on for hours without getting tired: it seems like fiction, and yet researchers from the Vrije Universiteit Brussel and imec have now finished a prototype that unites all these skills in one robot.
A wearable lower-limb exoskeleton that assists activities of daily living and enables data-driven remote rehabilitation.
The AidWear project aims to develop the artificial intelligence frameworks that are necessary to enable Robotic Assistive Devices (active prosthetics and lower-limb exoskeletons) that give Parkinson’s patients and individuals with an amputation a better quality of life. Building on the results of the AI4exo project and taking advantage of existing hardware, AidWear will advance three areas of interest: intention detection, mid-level optimization, and dynamic simulation.
The project will generate international exposure for Belgian AI and robotics through participation in the 2024 CYBATHLON competition. Furthermore, there are concrete paths to provide a return to society, such as technology transfer to existing Belgian start-ups, reduced healthcare costs for two large patient groups, and dissemination activities to showcase the potential of AI and robotics in healthcare.
This project is made possible by the Federal Public Service for Policy and Support.